На сайтах adn.agency используются cookie-файлы и другие аналогичные технологии. Если, прочитав это сообщение, вы остаетесь на нашем сайте, это означает, что вы не возражаете против использования этих технологий.

Хорошо

15 книг по машинному обучению

Когда мы слышим «машинное обучение», то думаем про нейросети и искусственный интеллект. А есть ли что-то еще? Специально для тех, кто хочет копнуть поглубже, прийти к истокам и разобраться, что к чему — наша сегодняшняя подборка. Не пугайтесь, новинки тоже есть.

Skill level: I’m too young to die

В качестве разминочки первая часть подборки будет на русском, что для общего понимания вроде как пойдет (но это не точно). Если вы с первых строк видите, что это бабское чтиво, скролльте до следующего уровня.

Машинное обучение

Авторы:

Хенрик Бринк — специалист по обработке и анализу данных и разработчик программного обеспечения.

Джозеф Ричардс — старший научный сотрудник в области прикладной статистики и предсказательной аналитики.

Марк Феверолф — основатель и президент компании Numinary Data Science, специализирующейся в области управления данными и предсказательной аналитики.

Описание:

Тем, кто только начинает, пригодятся главы с первой по пятую: там описаны процессы подготовки и исследования данных, моделирование и оценка моделей. Дальше практика и еще раз практика (шансы на получение таксистом чаевых, предсказание будущих рецензий на фильмы и еще много интересного). Плюс продвинутые темы: проектирование признаков и оптимизация.

Математические основы машинного обучения и прогнозирования

Автор:

Владимир Вячеславович Вьюгин — доктор физико-математических наук.

Описание:

Тем, кто хочет познакомиться с основами современной теории машинного обучения и теории игр с предсказаниями, лучше начать с этой книги. В первой части рассказывается об основах статистической теории машинного обучения. Во второй и третьей частях рассматриваются задачи в теоретико-игровой и сравнительной постановках: предсказания с использованием экспертных стратегий и игры с предсказаниями.

Верховный алгоритм

Автор:

Педро Домингос — профессор Вашингтонского университета, ведущий эксперт по машинному обучению и искусственному интеллекту.

Описание:

Автор знакомит читателей с пятью основными школами машинного обучения и показывает, как они используют идеи из нейробиологии, эволюционной биологии, физики и статистики, чтобы создавать алгоритмы, помогающие людям. Попутно профессор Домингос рассказывает об идее универсального самообучающегося алгоритма и о том, как он изменит жизнь человека, бизнес, науку и все общество.

The Elements of Statistical Learning. Data Mining, Inference and Prediction

Авторы:

Т. Хэсти, Р. Тибширани, Дж. Фридман

Описание:

Эта книга представляет собой попытку объединить многие важные новые идеи в обучении и объяснить их в статистической структуре. Авторы подчеркивают методы и их концептуальные основы, а не их теоретические свойства. Эта книга понравится не только статистикам, но и исследователям, практикам в самых разных областях.

Machine Learning, Neural and Statistical Classification

Авторы:

D. Michie, D.J. Spiegelhalter, C.C. Taylor

Описание:

Эта книга — современный обзор различных подходов к машинному обучению. Сравнивая эффективность направлений по разным показателям, авторы делают выводы об их применении к реальным проблемам, а также выделяют три основных подхода к исследованиям: статистический, машинное обучение и нейронная сеть.

Introduction to machine learning

Автор:

Nils J. Nilsson

Описание:

Эта книга не является практическим пособием или сборником теоретических доказательств. Это — промежуточное звено между теорией и практикой. Основное внимание уделяется важным идеям машинного обучения. В книге рассмотрены важные темы машинного обучения с 1996 года. Цель книги — подготовить читателя к дальнейшему освоению этой темы.

Машинное обучение. Наука и искусство построения алгоритмов, которые извлекают знания из данных

Автор:

Петер Флах

Описание:

Один из самых интересных учебников по машинному обучению. Автор рассказывает о методах построения моделей и алгоритмов. С первых страниц можно погрузиться в машинное обучение в действии без ненужных технических деталей. С каждой главой примеры становятся все сложнее и сложнее. В конце каждой части приводятся ссылки на дополнительную литературу с авторскими комментариями. Начав с основ, автор знакомит читателя с полезными фактами и подробно описывает методы машинного обучения.

Обучение с подкреплением

Автор:

Ричард С. Саттон, Эндрю Г. Барто

Описание:

Книга не о машинном обучение, а об одном из способов изучения. Обучение с подкреплением — метод, в ходе которого человек обучается, взаимодействуя с некоторой средой. Ричард Саттон и Эндрю Барто представляют отчет о ключевых идеях и алгоритмах такого обучения. Единственный необходимый навык для читателя — знакомство с элементарными понятиями вероятности.

Bayesian Reasoning and Machine Learning

Автор:

David Barber

Описание:

Эта книга для более профессионального уровня. Она рассчитана на выпускников или студентов магистратуры. Информация последовательно распределена по ходу всей книги от легкого к сложному.

Skill level: Nightmare

Подборка выше была для розовощеких барышень, у которых на уме одни фарфоровые куколки, статные гусары с кручеными усами да витание в эмпиреях — именно так сказал наш технический директор. После чего сделал настоящую подборку, она на английском (и если это вас смущает, то нажмите вот сюда).

Neural Network Design

Авторы:

Martin T Hagan, Howard B Demuth, Mark H Beale, Orlando De Jesús

Описание:

В книге вы найдете ясный и подробный обзор основных типов архитектуры нейросетей, узнаете все о методах и правилах их обучения, а также о применении на практике.

Deep Learning

Авторы:

Ian Goodfellow, Yoshua Bengio, Aaron Courville

Описание:

Книга рассказывает о глубоком обучении — о том, как иерархия понятий позволяет искусственному интеллекту изучать сложные концепции, строя их из более простых. Илон Маск назвал Deep Learning единственной всеобъемлющей книгой по этому вопросу.

Neural Networks: A Systematic Introduction

Авторы:

Raul Rojas, J. Feldman

Описание:

Все законы и модели, объединенные в общую теорию нейронных сетей, под одной обложкой — вот что представляет собой эта книга. В каждой главе куча примеров, иллюстраций и библиография.

Pattern Recognition and Machine Learning (Information Science and Statistics)

Автор:

Christopher M. Bishop

Описание:

Первый учебник по распознаванию образов, в основе которого лежит Байесовский подход. Предварительных знаний о распознавании образов не требуется, зато пригодится представление о многомерном анализе и основы линейной алгебры.

Make Your Own Neural Network

Автор:

Tariq Rashid

Описание:

Очень годное и в то же время очень простое для понимание руководство по нейросетям. Здесь все буквально разжевали, а потом разложили по полочкам. К концу книги вы научитесь программировать на Python и сможете создать собственную нейросеть.

Mahout in Action

Автор:

Sean Owen, Robin Anil, Robin Anil, Ellen Friedman

Описание:

Ну вот, мы в конце подборки, а это ее альфа и омега — ведь терпение должно вознаграждаться. Mahout — это java-библиотека, и в книге есть куча примеров, как ее можно использовать для решения реальных задач.

Качайте, заказывайте, изучайте и применяйте. Лайкайте еще эту запись, делитесь и всё такое.